home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software of the Month Club 2000 October
/
Software of the Month - Ultimate Collection Shareware 277.iso
/
pc
/
PROGRAMS
/
UTILITY
/
WINLINUX
/
DATA1.CAB
/
programs_-_include
/
NET
/
TCP.H
< prev
next >
Wrap
C/C++ Source or Header
|
1999-09-17
|
34KB
|
1,101 lines
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Definitions for the TCP module.
*
* Version: @(#)tcp.h 1.0.5 05/23/93
*
* Authors: Ross Biro, <bir7@leland.Stanford.Edu>
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _TCP_H
#define _TCP_H
#include <linux/config.h>
#include <linux/tcp.h>
#include <linux/slab.h>
#include <net/checksum.h>
/* This is for all connections with a full identity, no wildcards.
* New scheme, half the table is for TIME_WAIT, the other half is
* for the rest. I'll experiment with dynamic table growth later.
*/
#define TCP_HTABLE_SIZE 512
/* This is for listening sockets, thus all sockets which possess wildcards. */
#define TCP_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */
/* This is for all sockets, to keep track of the local port allocations. */
#define TCP_BHTABLE_SIZE 512
/* tcp_ipv4.c: These need to be shared by v4 and v6 because the lookup
* and hashing code needs to work with different AF's yet
* the port space is shared.
*/
extern struct sock *tcp_established_hash[TCP_HTABLE_SIZE];
extern struct sock *tcp_listening_hash[TCP_LHTABLE_SIZE];
/* There are a few simple rules, which allow for local port reuse by
* an application. In essence:
*
* 1) Sockets bound to different interfaces may share a local port.
* Failing that, goto test 2.
* 2) If all sockets have sk->reuse set, and none of them are in
* TCP_LISTEN state, the port may be shared.
* Failing that, goto test 3.
* 3) If all sockets are bound to a specific sk->rcv_saddr local
* address, and none of them are the same, the port may be
* shared.
* Failing this, the port cannot be shared.
*
* The interesting point, is test #2. This is what an FTP server does
* all day. To optimize this case we use a specific flag bit defined
* below. As we add sockets to a bind bucket list, we perform a
* check of: (newsk->reuse && (newsk->state != TCP_LISTEN))
* As long as all sockets added to a bind bucket pass this test,
* the flag bit will be set.
* The resulting situation is that tcp_v[46]_verify_bind() can just check
* for this flag bit, if it is set and the socket trying to bind has
* sk->reuse set, we don't even have to walk the owners list at all,
* we return that it is ok to bind this socket to the requested local port.
*
* Sounds like a lot of work, but it is worth it. In a more naive
* implementation (ie. current FreeBSD etc.) the entire list of ports
* must be walked for each data port opened by an ftp server. Needless
* to say, this does not scale at all. With a couple thousand FTP
* users logged onto your box, isn't it nice to know that new data
* ports are created in O(1) time? I thought so. ;-) -DaveM
*/
struct tcp_bind_bucket {
unsigned short port;
unsigned short flags;
#define TCPB_FLAG_LOCKED 0x0001
#define TCPB_FLAG_FASTREUSE 0x0002
#define TCPB_FLAG_GOODSOCKNUM 0x0004
struct tcp_bind_bucket *next;
struct sock *owners;
struct tcp_bind_bucket **pprev;
};
extern struct tcp_bind_bucket *tcp_bound_hash[TCP_BHTABLE_SIZE];
extern kmem_cache_t *tcp_bucket_cachep;
extern struct tcp_bind_bucket *tcp_bucket_create(unsigned short snum);
extern void tcp_bucket_unlock(struct sock *sk);
extern int tcp_port_rover;
/* Level-1 socket-demux cache. */
#define TCP_NUM_REGS 32
extern struct sock *tcp_regs[TCP_NUM_REGS];
#define TCP_RHASH_FN(__fport) \
((((__fport) >> 7) ^ (__fport)) & (TCP_NUM_REGS - 1))
#define TCP_RHASH(__fport) tcp_regs[TCP_RHASH_FN((__fport))]
#define TCP_SK_RHASH_FN(__sock) TCP_RHASH_FN((__sock)->dport)
#define TCP_SK_RHASH(__sock) tcp_regs[TCP_SK_RHASH_FN((__sock))]
static __inline__ void tcp_reg_zap(struct sock *sk)
{
struct sock **rpp;
rpp = &(TCP_SK_RHASH(sk));
if(*rpp == sk)
*rpp = NULL;
}
/* These are AF independent. */
static __inline__ int tcp_bhashfn(__u16 lport)
{
return (lport & (TCP_BHTABLE_SIZE - 1));
}
static __inline__ void tcp_sk_bindify(struct sock *sk)
{
struct tcp_bind_bucket *tb;
unsigned short snum = sk->num;
for(tb = tcp_bound_hash[tcp_bhashfn(snum)]; tb->port != snum; tb = tb->next)
;
/* Update bucket flags. */
if(tb->owners == NULL) {
/* We're the first. */
if(sk->reuse && sk->state != TCP_LISTEN)
tb->flags = TCPB_FLAG_FASTREUSE;
else
tb->flags = 0;
} else {
if((tb->flags & TCPB_FLAG_FASTREUSE) &&
((sk->reuse == 0) || (sk->state == TCP_LISTEN)))
tb->flags &= ~TCPB_FLAG_FASTREUSE;
}
if((sk->bind_next = tb->owners) != NULL)
tb->owners->bind_pprev = &sk->bind_next;
tb->owners = sk;
sk->bind_pprev = &tb->owners;
sk->prev = (struct sock *) tb;
}
/* This is a TIME_WAIT bucket. It works around the memory consumption
* problems of sockets in such a state on heavily loaded servers, but
* without violating the protocol specification.
*/
struct tcp_tw_bucket {
/* These _must_ match the beginning of struct sock precisely.
* XXX Yes I know this is gross, but I'd have to edit every single
* XXX networking file if I created a "struct sock_header". -DaveM
*/
struct sock *sklist_next;
struct sock *sklist_prev;
struct sock *bind_next;
struct sock **bind_pprev;
__u32 daddr;
__u32 rcv_saddr;
__u16 dport;
unsigned short num;
int bound_dev_if;
struct sock *next;
struct sock **pprev;
unsigned char state,
zapped;
__u16 sport;
unsigned short family;
unsigned char reuse,
nonagle;
/* And these are ours. */
__u32 rcv_nxt;
struct tcp_func *af_specific;
struct tcp_bind_bucket *tb;
struct tcp_tw_bucket *next_death;
int death_slot;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct in6_addr v6_daddr;
struct in6_addr v6_rcv_saddr;
#endif
};
extern kmem_cache_t *tcp_timewait_cachep;
/* Socket demux engine toys. */
#ifdef __BIG_ENDIAN
#define TCP_COMBINED_PORTS(__sport, __dport) \
(((__u32)(__sport)<<16) | (__u32)(__dport))
#else /* __LITTLE_ENDIAN */
#define TCP_COMBINED_PORTS(__sport, __dport) \
(((__u32)(__dport)<<16) | (__u32)(__sport))
#endif
#if (BITS_PER_LONG == 64)
#ifdef __BIG_ENDIAN
#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
__u64 __name = (((__u64)(__saddr))<<32)|((__u64)(__daddr));
#else /* __LITTLE_ENDIAN */
#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
__u64 __name = (((__u64)(__daddr))<<32)|((__u64)(__saddr));
#endif /* __BIG_ENDIAN */
#define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
(((*((__u64 *)&((__sk)->daddr)))== (__cookie)) && \
((*((__u32 *)&((__sk)->dport)))== (__ports)) && \
(!((__sk)->bound_dev_if) || ((__sk)->bound_dev_if == (__dif))))
#else /* 32-bit arch */
#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr)
#define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
(((__sk)->daddr == (__saddr)) && \
((__sk)->rcv_saddr == (__daddr)) && \
((*((__u32 *)&((__sk)->dport)))== (__ports)) && \
(!((__sk)->bound_dev_if) || ((__sk)->bound_dev_if == (__dif))))
#endif /* 64-bit arch */
#define TCP_IPV6_MATCH(__sk, __saddr, __daddr, __ports, __dif) \
(((*((__u32 *)&((__sk)->dport)))== (__ports)) && \
((__sk)->family == AF_INET6) && \
!ipv6_addr_cmp(&(__sk)->net_pinfo.af_inet6.daddr, (__saddr)) && \
!ipv6_addr_cmp(&(__sk)->net_pinfo.af_inet6.rcv_saddr, (__daddr)) && \
(!((__sk)->bound_dev_if) || ((__sk)->bound_dev_if == (__dif))))
/* These can have wildcards, don't try too hard. */
static __inline__ int tcp_lhashfn(unsigned short num)
{
return num & (TCP_LHTABLE_SIZE - 1);
}
static __inline__ int tcp_sk_listen_hashfn(struct sock *sk)
{
return tcp_lhashfn(sk->num);
}
/* Note, that it is > than ipv6 header */
#define NETHDR_SIZE (sizeof(struct iphdr) + 40)
/*
* 40 is maximal IP options size
* 20 is the maximum TCP options size we can currently construct on a SYN.
* 40 is the maximum possible TCP options size.
*/
#define MAX_SYN_SIZE (NETHDR_SIZE + sizeof(struct tcphdr) + 20 + MAX_HEADER + 15)
#define MAX_FIN_SIZE (NETHDR_SIZE + sizeof(struct tcphdr) + MAX_HEADER + 15)
#define BASE_ACK_SIZE (NETHDR_SIZE + MAX_HEADER + 15)
#define MAX_ACK_SIZE (NETHDR_SIZE + sizeof(struct tcphdr) + MAX_HEADER + 15)
#define MAX_RESET_SIZE (NETHDR_SIZE + sizeof(struct tcphdr) + MAX_HEADER + 15)
#define MAX_TCPHEADER_SIZE (NETHDR_SIZE + sizeof(struct tcphdr) + 20 + MAX_HEADER + 15)
/*
* Never offer a window over 32767 without using window scaling. Some
* poor stacks do signed 16bit maths!
*/
#define MAX_WINDOW 32767
#define MIN_WINDOW 2048
#define MAX_ACK_BACKLOG 2
#define MAX_DELAY_ACK 2
#define TCP_WINDOW_DIFF 2048
/* urg_data states */
#define URG_VALID 0x0100
#define URG_NOTYET 0x0200
#define URG_READ 0x0400
#define TCP_RETR1 7 /*
* This is how many retries it does before it
* tries to figure out if the gateway is
* down.
*/
#define TCP_RETR2 15 /*
* This should take at least
* 90 minutes to time out.
*/
#define TCP_TIMEOUT_LEN (15*60*HZ) /* should be about 15 mins */
#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to successfully
* close the socket, about 60 seconds */
#define TCP_FIN_TIMEOUT (3*60*HZ) /* BSD style FIN_WAIT2 deadlock breaker */
#define TCP_ACK_TIME (3*HZ) /* time to delay before sending an ACK */
#define TCP_DONE_TIME (5*HZ/2)/* maximum time to wait before actually
* destroying a socket */
#define TCP_WRITE_TIME (30*HZ) /* initial time to wait for an ACK,
* after last transmit */
#define TCP_TIMEOUT_INIT (3*HZ) /* RFC 1122 initial timeout value */
#define TCP_SYN_RETRIES 10 /* number of times to retry opening a
* connection (TCP_RETR2-....) */
#define TCP_PROBEWAIT_LEN (1*HZ)/* time to wait between probes when
* I've got something to write and
* there is no window */
#define TCP_KEEPALIVE_TIME (180*60*HZ) /* two hours */
#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
#define TCP_KEEPALIVE_PERIOD ((75*HZ)>>2) /* period of keepalive check */
#define TCP_SYNACK_PERIOD (HZ/2) /* How often to run the synack slow timer */
#define TCP_QUICK_TRIES 8 /* How often we try to retransmit, until
* we tell the link layer that it is something
* wrong (e.g. that it can expire redirects) */
#define TCP_BUCKETGC_PERIOD (HZ)
/* TIME_WAIT reaping mechanism. */
#define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */
#define TCP_TWKILL_PERIOD ((HZ*60)/TCP_TWKILL_SLOTS)
/*
* TCP option
*/
#define TCPOPT_NOP 1 /* Padding */
#define TCPOPT_EOL 0 /* End of options */
#define TCPOPT_MSS 2 /* Segment size negotiating */
#define TCPOPT_WINDOW 3 /* Window scaling */
#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
#define TCPOPT_SACK 5 /* SACK Block */
#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
/*
* TCP option lengths
*/
#define TCPOLEN_MSS 4
#define TCPOLEN_WINDOW 3
#define TCPOLEN_SACK_PERM 2
#define TCPOLEN_TIMESTAMP 10
/* But this is what stacks really send out. */
#define TCPOLEN_TSTAMP_ALIGNED 12
#define TCPOLEN_WSCALE_ALIGNED 4
#define TCPOLEN_SACKPERM_ALIGNED 4
#define TCPOLEN_SACK_BASE 2
#define TCPOLEN_SACK_BASE_ALIGNED 4
#define TCPOLEN_SACK_PERBLOCK 8
struct open_request;
struct or_calltable {
void (*rtx_syn_ack) (struct sock *sk, struct open_request *req);
void (*destructor) (struct open_request *req);
void (*send_reset) (struct sk_buff *skb);
};
struct tcp_v4_open_req {
__u32 loc_addr;
__u32 rmt_addr;
struct ip_options *opt;
};
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
struct tcp_v6_open_req {
struct in6_addr loc_addr;
struct in6_addr rmt_addr;
struct sk_buff *pktopts;
int iif;
};
#endif
/* this structure is too big */
struct open_request {
struct open_request *dl_next; /* Must be first member! */
__u32 rcv_isn;
__u32 snt_isn;
__u16 rmt_port;
__u16 mss;
__u8 retrans;
__u8 __pad;
unsigned snd_wscale : 4,
rcv_wscale : 4,
tstamp_ok : 1,
sack_ok : 1,
wscale_ok : 1;
/* The following two fields can be easily recomputed I think -AK */
__u32 window_clamp; /* window clamp at creation time */
__u32 rcv_wnd; /* rcv_wnd offered first time */
__u32 ts_recent;
unsigned long expires;
struct or_calltable *class;
struct sock *sk;
union {
struct tcp_v4_open_req v4_req;
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
struct tcp_v6_open_req v6_req;
#endif
} af;
#ifdef CONFIG_IP_TRANSPARENT_PROXY
__u16 lcl_port; /* LVE */
#endif
};
/* SLAB cache for open requests. */
extern kmem_cache_t *tcp_openreq_cachep;
#define tcp_openreq_alloc() kmem_cache_alloc(tcp_openreq_cachep, SLAB_ATOMIC)
#define tcp_openreq_free(req) kmem_cache_free(tcp_openreq_cachep, req)
/*
* Pointers to address related TCP functions
* (i.e. things that depend on the address family)
*
* BUGGG_FUTURE: all the idea behind this struct is wrong.
* It mixes socket frontend with transport function.
* With port sharing between IPv6/v4 it gives the only advantage,
* only poor IPv6 needs to permanently recheck, that it
* is still IPv6 8)8) It must be cleaned up as soon as possible.
* --ANK (980802)
*/
struct tcp_func {
void (*queue_xmit) (struct sk_buff *skb);
void (*send_check) (struct sock *sk,
struct tcphdr *th,
int len,
struct sk_buff *skb);
int (*rebuild_header) (struct sock *sk);
int (*conn_request) (struct sock *sk,
struct sk_buff *skb,
__u32 isn);
struct sock * (*syn_recv_sock) (struct sock *sk,
struct sk_buff *skb,
struct open_request *req,
struct dst_entry *dst);
struct sock * (*get_sock) (struct sk_buff *skb,
struct tcphdr *th);
__u16 net_header_len;
int (*setsockopt) (struct sock *sk,
int level,
int optname,
char *optval,
int optlen);
int (*getsockopt) (struct sock *sk,
int level,
int optname,
char *optval,
int *optlen);
void (*addr2sockaddr) (struct sock *sk,
struct sockaddr *);
int sockaddr_len;
};
/*
* The next routines deal with comparing 32 bit unsigned ints
* and worry about wraparound (automatic with unsigned arithmetic).
*/
extern __inline int before(__u32 seq1, __u32 seq2)
{
return (__s32)(seq1-seq2) < 0;
}
extern __inline int after(__u32 seq1, __u32 seq2)
{
return (__s32)(seq2-seq1) < 0;
}
/* is s2<=s1<=s3 ? */
extern __inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
{
return seq3 - seq2 >= seq1 - seq2;
}
extern struct proto tcp_prot;
extern struct tcp_mib tcp_statistics;
extern unsigned short tcp_good_socknum(void);
extern void tcp_v4_err(struct sk_buff *skb,
unsigned char *, int);
extern void tcp_shutdown (struct sock *sk, int how);
extern int tcp_v4_rcv(struct sk_buff *skb,
unsigned short len);
extern int tcp_do_sendmsg(struct sock *sk, struct msghdr *msg);
extern int tcp_ioctl(struct sock *sk,
int cmd,
unsigned long arg);
extern int tcp_rcv_state_process(struct sock *sk,
struct sk_buff *skb,
struct tcphdr *th,
unsigned len);
extern int tcp_rcv_established(struct sock *sk,
struct sk_buff *skb,
struct tcphdr *th,
unsigned len);
extern int tcp_timewait_state_process(struct tcp_tw_bucket *tw,
struct sk_buff *skb,
struct tcphdr *th,
unsigned len);
extern void tcp_close(struct sock *sk,
long timeout);
extern struct sock * tcp_accept(struct sock *sk, int flags);
extern unsigned int tcp_poll(struct file * file, struct socket *sock, struct poll_table_struct *wait);
extern void tcp_write_space(struct sock *sk);
extern int tcp_getsockopt(struct sock *sk, int level,
int optname, char *optval,
int *optlen);
extern int tcp_setsockopt(struct sock *sk, int level,
int optname, char *optval,
int optlen);
extern void tcp_set_keepalive(struct sock *sk, int val);
extern int tcp_recvmsg(struct sock *sk,
struct msghdr *msg,
int len, int nonblock,
int flags, int *addr_len);
extern void tcp_parse_options(struct sock *sk, struct tcphdr *th,
struct tcp_opt *tp, int no_fancy);
/*
* TCP v4 functions exported for the inet6 API
*/
extern int tcp_v4_rebuild_header(struct sock *sk);
extern int tcp_v4_build_header(struct sock *sk,
struct sk_buff *skb);
extern void tcp_v4_send_check(struct sock *sk,
struct tcphdr *th, int len,
struct sk_buff *skb);
extern int tcp_v4_conn_request(struct sock *sk,
struct sk_buff *skb,
__u32 isn);
extern struct sock * tcp_create_openreq_child(struct sock *sk,
struct open_request *req,
struct sk_buff *skb);
extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk,
struct sk_buff *skb,
struct open_request *req,
struct dst_entry *dst);
extern int tcp_v4_do_rcv(struct sock *sk,
struct sk_buff *skb);
extern int tcp_v4_connect(struct sock *sk,
struct sockaddr *uaddr,
int addr_len);
extern void tcp_connect(struct sock *sk,
struct sk_buff *skb,
int est_mss);
extern struct sk_buff * tcp_make_synack(struct sock *sk,
struct dst_entry *dst,
struct open_request *req,
int mss);
/* From syncookies.c */
extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
struct ip_options *opt);
extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
__u16 *mss);
/* tcp_output.c */
extern void tcp_read_wakeup(struct sock *);
extern void tcp_write_xmit(struct sock *);
extern void tcp_time_wait(struct sock *);
extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
extern void tcp_fack_retransmit(struct sock *);
extern void tcp_xmit_retransmit_queue(struct sock *);
extern void tcp_simple_retransmit(struct sock *);
extern void tcp_send_probe0(struct sock *);
extern void tcp_send_partial(struct sock *);
extern void tcp_write_wakeup(struct sock *);
extern void tcp_send_fin(struct sock *sk);
extern void tcp_send_active_reset(struct sock *sk);
extern int tcp_send_synack(struct sock *);
extern void tcp_transmit_skb(struct sock *, struct sk_buff *);
extern void tcp_send_skb(struct sock *, struct sk_buff *, int force_queue);
extern void tcp_send_ack(struct sock *sk);
extern void tcp_send_delayed_ack(struct tcp_opt *tp, int max_timeout);
/* CONFIG_IP_TRANSPARENT_PROXY */
extern int tcp_chkaddr(struct sk_buff *);
/* tcp_timer.c */
#define tcp_reset_msl_timer(x,y,z) net_reset_timer(x,y,z)
extern void tcp_reset_xmit_timer(struct sock *, int, unsigned long);
extern void tcp_init_xmit_timers(struct sock *);
extern void tcp_clear_xmit_timers(struct sock *);
extern void tcp_retransmit_timer(unsigned long);
extern void tcp_delack_timer(unsigned long);
extern void tcp_probe_timer(unsigned long);
extern struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
struct open_request *req);
/*
* TCP slow timer
*/
extern struct timer_list tcp_slow_timer;
struct tcp_sl_timer {
atomic_t count;
unsigned long period;
unsigned long last;
void (*handler) (unsigned long);
};
#define TCP_SLT_SYNACK 0
#define TCP_SLT_KEEPALIVE 1
#define TCP_SLT_TWKILL 2
#define TCP_SLT_BUCKETGC 3
#define TCP_SLT_MAX 4
extern struct tcp_sl_timer tcp_slt_array[TCP_SLT_MAX];
extern int tcp_sync_mss(struct sock *sk, u32 pmtu);
/* Compute the current effective MSS, taking SACKs and IP options,
* and even PMTU discovery events into account.
*/
static __inline__ unsigned int tcp_current_mss(struct sock *sk)
{
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
struct dst_entry *dst = sk->dst_cache;
int mss_now = tp->mss_cache;
if (dst && dst->pmtu != tp->pmtu_cookie)
mss_now = tcp_sync_mss(sk, dst->pmtu);
if(tp->sack_ok && tp->num_sacks)
mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
(tp->num_sacks * TCPOLEN_SACK_PERBLOCK));
return mss_now > 8 ? mss_now : 8;
}
/* Compute the actual receive window we are currently advertising.
* Rcv_nxt can be after the window if our peer push more data
* than the offered window.
*/
static __inline__ u32 tcp_receive_window(struct tcp_opt *tp)
{
s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
if (win < 0)
win = 0;
return (u32) win;
}
/* Choose a new window, without checks for shrinking, and without
* scaling applied to the result. The caller does these things
* if necessary. This is a "raw" window selection.
*/
extern u32 __tcp_select_window(struct sock *sk);
/* Chose a new window to advertise, update state in tcp_opt for the
* socket, and return result with RFC1323 scaling applied. The return
* value can be stuffed directly into th->window for an outgoing
* frame.
*/
extern __inline__ u16 tcp_select_window(struct sock *sk)
{
struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
u32 cur_win = tcp_receive_window(tp);
u32 new_win = __tcp_select_window(sk);
/* Never shrink the offered window */
if(new_win < cur_win) {
/* Danger Will Robinson!
* Don't update rcv_wup/rcv_wnd here or else
* we will not be able to advertise a zero
* window in time. --DaveM
*/
new_win = cur_win;
} else {
tp->rcv_wnd = new_win;
tp->rcv_wup = tp->rcv_nxt;
}
/* RFC1323 scaling applied */
return new_win >> tp->rcv_wscale;
}
/* See if we can advertise non-zero, and if so how much we
* can increase our advertisement. If it becomes more than
* twice what we are talking about right now, return true.
*/
extern __inline__ int tcp_raise_window(struct sock *sk)
{
struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
u32 cur_win = tcp_receive_window(tp);
u32 new_win = __tcp_select_window(sk);
return (new_win && (new_win > (cur_win << 1)));
}
/* This is what the send packet queueing engine uses to pass
* TCP per-packet control information to the transmission
* code. We also store the host-order sequence numbers in
* here too. This is 36 bytes on 32-bit architectures,
* 40 bytes on 64-bit machines, if this grows please adjust
* skbuff.h:skbuff->cb[xxx] size appropriately.
*/
struct tcp_skb_cb {
union {
struct inet_skb_parm h4;
#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
struct inet6_skb_parm h6;
#endif
} header; /* For incoming frames */
__u32 seq; /* Starting sequence number */
__u32 end_seq; /* SEQ + FIN + SYN + datalen */
unsigned long when; /* used to compute rtt's */
__u8 flags; /* TCP header flags. */
/* NOTE: These must match up to the flags byte in a
* real TCP header.
*/
#define TCPCB_FLAG_FIN 0x01
#define TCPCB_FLAG_SYN 0x02
#define TCPCB_FLAG_RST 0x04
#define TCPCB_FLAG_PSH 0x08
#define TCPCB_FLAG_ACK 0x10
#define TCPCB_FLAG_URG 0x20
__u8 sacked; /* State flags for SACK/FACK. */
#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
__u16 urg_ptr; /* Valid w/URG flags is set. */
__u32 ack_seq; /* Sequence number ACK'd */
};
#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
/* This determines how many packets are "in the network" to the best
* of our knowledge. In many cases it is conservative, but where
* detailed information is available from the receiver (via SACK
* blocks etc.) we can make more aggressive calculations.
*
* Use this for decisions involving congestion control, use just
* tp->packets_out to determine if the send queue is empty or not.
*
* Read this equation as:
*
* "Packets sent once on transmission queue" MINUS
* "Packets acknowledged by FACK information" PLUS
* "Packets fast retransmitted"
*/
static __inline__ int tcp_packets_in_flight(struct tcp_opt *tp)
{
return tp->packets_out - tp->fackets_out + tp->retrans_out;
}
/* This checks if the data bearing packet SKB (usually tp->send_head)
* should be put on the wire right now.
*/
static __inline__ int tcp_snd_test(struct sock *sk, struct sk_buff *skb)
{
struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
int nagle_check = 1;
/* RFC 1122 - section 4.2.3.4
*
* We must queue if
*
* a) The right edge of this frame exceeds the window
* b) There are packets in flight and we have a small segment
* [SWS avoidance and Nagle algorithm]
* (part of SWS is done on packetization)
* c) We are retransmiting [Nagle]
* d) We have too many packets 'in flight'
*
* Don't use the nagle rule for urgent data.
*/
if ((sk->nonagle == 2 && (skb->len < tp->mss_cache)) ||
(!sk->nonagle &&
skb->len < (tp->mss_cache >> 1) &&
tp->packets_out &&
!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_URG)))
nagle_check = 0;
return (nagle_check &&
(tcp_packets_in_flight(tp) < tp->snd_cwnd) &&
!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) &&
tp->retransmits == 0);
}
/* Push out any pending frames which were held back due to
* TCP_CORK or attempt at coalescing tiny packets.
* The socket must be locked by the caller.
*/
static __inline__ void tcp_push_pending_frames(struct sock *sk, struct tcp_opt *tp)
{
if(tp->send_head) {
if(tcp_snd_test(sk, tp->send_head))
tcp_write_xmit(sk);
else if(tp->packets_out == 0 && !tp->pending) {
/* We held off on this in tcp_send_skb() */
tp->pending = TIME_PROBE0;
tcp_reset_xmit_timer(sk, TIME_PROBE0, tp->rto);
}
}
}
/* This tells the input processing path that an ACK should go out
* right now.
*/
#define tcp_enter_quickack_mode(__tp) ((__tp)->ato |= (1<<31))
#define tcp_exit_quickack_mode(__tp) ((__tp)->ato &= ~(1<<31))
#define tcp_in_quickack_mode(__tp) (((__tp)->ato & (1 << 31)) != 0)
/*
* List all states of a TCP socket that can be viewed as a "connected"
* state. This now includes TCP_SYN_RECV, although I am not yet fully
* convinced that this is the solution for the 'getpeername(2)'
* problem. Thanks to Stephen A. Wood <saw@cebaf.gov> -FvK
*/
extern __inline const int tcp_connected(const int state)
{
return ((1 << state) &
(TCPF_ESTABLISHED|TCPF_CLOSE_WAIT|TCPF_FIN_WAIT1|
TCPF_FIN_WAIT2|TCPF_SYN_RECV));
}
/*
* Calculate(/check) TCP checksum
*/
static __inline__ u16 tcp_v4_check(struct tcphdr *th, int len,
unsigned long saddr, unsigned long daddr,
unsigned long base)
{
return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
}
#undef STATE_TRACE
#ifdef STATE_TRACE
static char *statename[]={
"Unused","Established","Syn Sent","Syn Recv",
"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
"Close Wait","Last ACK","Listen","Closing"
};
#endif
static __inline__ void tcp_set_state(struct sock *sk, int state)
{
int oldstate = sk->state;
sk->state = state;
#ifdef STATE_TRACE
SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
#endif
switch (state) {
case TCP_ESTABLISHED:
if (oldstate != TCP_ESTABLISHED)
tcp_statistics.TcpCurrEstab++;
break;
case TCP_CLOSE:
{
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
/* Should be about 2 rtt's */
net_reset_timer(sk, TIME_DONE, min(tp->srtt * 2, TCP_DONE_TIME));
sk->prot->unhash(sk);
/* fall through */
}
default:
if (oldstate==TCP_ESTABLISHED)
tcp_statistics.TcpCurrEstab--;
}
}
static __inline__ void tcp_build_and_update_options(__u32 *ptr, struct tcp_opt *tp, __u32 tstamp)
{
if (tp->tstamp_ok) {
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_TIMESTAMP << 8) |
TCPOLEN_TIMESTAMP);
*ptr++ = htonl(tstamp);
*ptr++ = htonl(tp->ts_recent);
}
if(tp->sack_ok && tp->num_sacks) {
int this_sack;
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
(TCPOPT_NOP << 16) |
(TCPOPT_SACK << 8) |
(TCPOLEN_SACK_BASE +
(tp->num_sacks * TCPOLEN_SACK_PERBLOCK)));
for(this_sack = 0; this_sack < tp->num_sacks; this_sack++) {
*ptr++ = htonl(tp->selective_acks[this_sack].start_seq);
*ptr++ = htonl(tp->selective_acks[this_sack].end_seq);
}
}
}
/* Construct a tcp options header for a SYN or SYN_ACK packet.
* If this is every changed make sure to change the definition of
* MAX_SYN_SIZE to match the new maximum number of options that you
* can generate.
*/
extern __inline__ void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
int offer_wscale, int wscale, __u32 tstamp, __u32 ts_recent)
{
/* We always get an MSS option.
* The option bytes which will be seen in normal data
* packets should timestamps be used, must be in the MSS
* advertised. But we subtract them from sk->mss so
* that calculations in tcp_sendmsg are simpler etc.
* So account for this fact here if necessary. If we
* don't do this correctly, as a receiver we won't
* recognize data packets as being full sized when we
* should, and thus we won't abide by the delayed ACK
* rules correctly.
* SACKs don't matter, we never delay an ACK when we
* have any of those going out.
*/
*ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
if (ts) {
if(sack)
*ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
(TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
else
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
(TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
*ptr++ = htonl(tstamp); /* TSVAL */
*ptr++ = htonl(ts_recent); /* TSECR */
} else if(sack)
*ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
(TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
if (offer_wscale)
*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
}
/* Determine a window scaling and initial window to offer.
* Based on the assumption that the given amount of space
* will be offered. Store the results in the tp structure.
* NOTE: for smooth operation initial space offering should
* be a multiple of mss if possible. We assume here that mss >= 1.
* This MUST be enforced by all callers.
*/
extern __inline__ void tcp_select_initial_window(__u32 space, __u16 mss,
__u32 *rcv_wnd,
__u32 *window_clamp,
int wscale_ok,
__u8 *rcv_wscale)
{
/* If no clamp set the clamp to the max possible scaled window */
if (*window_clamp == 0)
(*window_clamp) = (65535<<14);
space = min(*window_clamp,space);
/* Quantize space offering to a multiple of mss if possible. */
if (space > mss)
space = (space/mss)*mss;
/* NOTE: offering an initial window larger than 32767
* will break some buggy TCP stacks. We try to be nice.
* If we are not window scaling, then this truncates
* our initial window offering to 32k. There should also
* be a sysctl option to stop being nice.
*/
(*rcv_wnd) = min(space, MAX_WINDOW);
(*rcv_wscale) = 0;
if (wscale_ok) {
/* See RFC1323 for an explanation of the limit to 14 */
while (space > 65535 && (*rcv_wscale) < 14) {
space >>= 1;
(*rcv_wscale)++;
}
}
/* Set the clamp no higher than max representable value */
(*window_clamp) = min(65535<<(*rcv_wscale),*window_clamp);
}
extern __inline__ void tcp_synq_unlink(struct tcp_opt *tp, struct open_request *req, struct open_request *prev)
{
if(!req->dl_next)
tp->syn_wait_last = (struct open_request **)prev;
prev->dl_next = req->dl_next;
}
extern __inline__ void tcp_synq_queue(struct tcp_opt *tp, struct open_request *req)
{
req->dl_next = NULL;
*tp->syn_wait_last = req;
tp->syn_wait_last = &req->dl_next;
}
extern __inline__ void tcp_synq_init(struct tcp_opt *tp)
{
tp->syn_wait_queue = NULL;
tp->syn_wait_last = &tp->syn_wait_queue;
}
extern void __tcp_inc_slow_timer(struct tcp_sl_timer *slt);
extern __inline__ void tcp_inc_slow_timer(int timer)
{
struct tcp_sl_timer *slt = &tcp_slt_array[timer];
if (atomic_read(&slt->count) == 0)
{
__tcp_inc_slow_timer(slt);
}
atomic_inc(&slt->count);
}
extern __inline__ void tcp_dec_slow_timer(int timer)
{
struct tcp_sl_timer *slt = &tcp_slt_array[timer];
atomic_dec(&slt->count);
}
/* This needs to use a slow timer, so it is here. */
static __inline__ void tcp_sk_unbindify(struct sock *sk)
{
struct tcp_bind_bucket *tb = (struct tcp_bind_bucket *) sk->prev;
if(sk->bind_next)
sk->bind_next->bind_pprev = sk->bind_pprev;
*sk->bind_pprev = sk->bind_next;
if(tb->owners == NULL)
tcp_inc_slow_timer(TCP_SLT_BUCKETGC);
}
extern const char timer_bug_msg[];
static inline void tcp_clear_xmit_timer(struct sock *sk, int what)
{
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
struct timer_list *timer;
switch (what) {
case TIME_RETRANS:
timer = &tp->retransmit_timer;
break;
case TIME_DACK:
timer = &tp->delack_timer;
break;
case TIME_PROBE0:
timer = &tp->probe_timer;
break;
default:
printk(timer_bug_msg);
return;
};
if(timer->prev != NULL)
del_timer(timer);
}
static inline int tcp_timer_is_set(struct sock *sk, int what)
{
struct tcp_opt *tp = &sk->tp_pinfo.af_tcp;
switch (what) {
case TIME_RETRANS:
return tp->retransmit_timer.prev != NULL;
break;
case TIME_DACK:
return tp->delack_timer.prev != NULL;
break;
case TIME_PROBE0:
return tp->probe_timer.prev != NULL;
break;
default:
printk(timer_bug_msg);
};
return 0;
}
#endif /* _TCP_H */